This post is also available in: heעברית (Hebrew)

The US Defense Advanced Research Projects Agency (DARPA) has been testing drones to operate without human or GPS assistance. The first phase of DARPA’s Fast Lightweight Autonomy (FLA) program concluded recently following a series of obstacle-course flight tests in central Florida.

DARPA’s FLA program is advancing technology to enable small unmanned quadcopters to fly autonomously through cluttered buildings and obstacle-strewn environments at fast speeds (up to 20 meters per second, or 45 mph) using onboard cameras and sensors as “eyes” and smart algorithms to self-navigate.

According to DARPA website, potential applications for the technology include safely and quickly scanning for threats inside a building before military teams enter, searching for a downed pilot in a heavily forested area or jungle in hostile territory where overhead imagery can’t see through the tree canopy, or locating survivors following earthquakes or other disasters when entering a damaged structure could be unsafe.

“The goal of FLA is to develop advanced algorithms to allow unmanned air or ground vehicles to operate without the guidance of a human tele-operator, GPS, or any datalinks going to or coming from the vehicle,” said JC Ledé, the DARPA FLA program manager. “Most people don’t realize how dependent current UAVs are on either a remote pilot, GPS, or both. Small, low-cost unmanned aircraft rely heavily on tele-operators and GPS not only for knowing the vehicle’s position precisely, but also for correcting errors in the estimated altitude and velocity of the air vehicle, without which the vehicle wouldn’t know for very long if it’s flying straight and level or in a

steep turn. In FLA, the aircraft has to figure all of that out on its own with sufficient accuracy to avoid obstacles and complete its mission.”

The FLA program is focused on developing a new class of algorithms that enable UAVs to operate in GPS-denied or GPS-unavailable environments—like indoors, underground, or intentionally jammed—without a human tele-operator.

Under the FLA program, the only human input required is the target or objective for the UAV to search for—which could be in the form of a digital photograph uploaded to the onboard computer before flight—as well as the estimated direction and distance to the target.

A basic map or satellite picture of the area, if available, could also be uploaded. After the operator gives the launch command, the vehicle must navigate its way to the objective with no other knowledge of the terrain or environment, autonomously maneuvering around uncharted obstacles in its way and finding alternative pathways as needed.